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Abstract— Accurate transformation estimation between cam-
era space and robot space is essential. Traditional methods using
markers for hand-eye calibration require offline image collec-
tion, limiting their suitability for online self-calibration. Recent
learning-based robot pose estimation methods, while advancing
online calibration, struggle with cross-robot generalization and
require the robot to be fully visible. This work proposes a
Foundation feature-driven online End-Effector Pose Estimation
(FEEPE) algorithm, characterized by its training-free and cross
end-effector generalization capabilities. Inspired by the zero-
shot generalization capabilities of foundation models, FEEPE
leverages pre-trained visual features to estimate 2D-3D corre-
spondences derived from the CAD model and target image,
enabling 6D pose estimation via the PnP algorithm. To resolve
ambiguities from partial observations and symmetry, a multi-
historical key frame enhanced pose optimization algorithm is in-
troduced, utilizing temporal information for improved accuracy.
Compared to traditional hand-eye calibration, FEEPE enables
marker-free online calibration. Unlike robot pose estimation,
it generalizes across robots and end-effectors in a training-
free manner. Extensive experiments demonstrate its superior
flexibility, generalization, and performance. Additional demon-
strations are available at https://feepose.github.io/

I. INTRODUCTION

Consider a robot performing a manipulation task [1], [2],
[3], [4] where perception results are obtained in the camera
space. How can a robot execute actions based on these
perception results? This requires an accurate transformation
between the camera and the robot space. Traditional methods
employ augmented reality (AR) tags [5], [6], [7] as markers
attached to the end-effector and solve a homogeneous matrix
equation [8] to determine the transformation. However, this
approach requires an offline collection of images of the
robotic arm in different states for optimization, making it
unsuitable for online robot self-calibration [9], [10]. This
limitation restricts the rapid deployment of robotic systems.

Recent advancements in learning-based robot pose es-
timation algorithms [11], [12], [13] have shown promise
for enabling online self-calibration. These algorithms [14],
[15] aim to use data-driven methods to estimate a robot’s
pose from images. However, these methods lack cross-robot
generalization and require full robot visibility, limiting their
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Fig. 1. We propose FEEPE (Foundation feature-driven End-Effector Pose
Estimation), an online, marker-free, training-free method for pose estimation
that generalizes across robots and end-effectors.

applicability. Another related field is object pose estima-
tion [16], [17], [18], which could be adapted for end-
effector pose estimation. However, these methods typically
require training on large-scale object pose estimation datasets
and struggle with symmetric objects, which is common in
end-effectors. Our goal is to develop an online, marker-
free, highly generalizable and training-free end-effector
pose estimation algorithm for robot self-calibration, which
presents the following challenges:

• End-effector diversity in appearance and geometry
poses a challenge for cross-end-effector generalization.

• The ambiguity issue caused by partial observations and
end-effector symmetry.

To address these, we propose FEEPE (Foundation feature-
driven End-Effector Pose Estimation). Leveraging the zero-
shot generalization of visual foundation models [19], [20],
FEEPE uses pre-trained features for 6D pose estimation,
handling appearance and geometry variations. Given a CAD
model, we pre-render reference images. We use Dinov2
to extract features and establish 2D-2D correspondences,
enabling 2D-3D mappings to the 3D model. This facilitates
an initial 6D pose estimation using the PnP algorithm [21].
Nevertheless, the ambiguity from partial observations and
the end-effector’s symmetry can lead to inaccuracies when
predicting from a single image. To address this, we introduce



a multi-historical key frame enhanced pose optimization that
utilizes temporal information and robot priors to resolve
symmetry ambiguities and enhance accuracy.

Overall, as shown in Figure 1, FEEPE enables marker-
free online calibration compared to traditional hand-eye
calibration. In contrast to learning-based robot pose estima-
tion, our method achieves cross-robot and cross-end-effector
generalization in a training-free manner and does not require
the robot arm to be visible. This is the first online, marker-
free, generalizable, training-free end-effector pose estimation
algorithm for robot self-calibration. Extensive experimental
validation demonstrates the convenience, robustness, and
high precision (1mm) of our approach, whether compared to
learning-based or traditional hand-eye calibration methods.

II. RELATED WORK

A. Camera-to-Robot Pose Estimation.

Traditionally, camera-to-robot pose is estimated by hand-
eye calibration [8], using markers like ARTag [6] or April-
Tag [7]. Recently, learning-based methods [12], [22] have
emerged, utilizing deep neural networks for online calibra-
tion. DREAM [11] leverages a CNN to detect pre-defined
robot keypoints and solve the camera-to-robot pose using a
PnP solver. CtRNet [14] further improves the performance
by utilizing a differentiable renderer and a segmentation
objective. RoboKeyGen [15] uses a diffusion model to lift 2D
keypoints into 3D, jointly estimating robot joint angles and
camera pose. RoboPose [12] adopts a render-and-compare
approach. Current methods have taken a step towards online
calibration, but they require the full robot to be visible and
are robot-specific, whereas our method generalizes to unseen
robots. There have also been works aiming to perform online
calibration by end-effector pose estimation. [23] directly
regresses the end-effector pose from a pointcloud. [24]
predict 3D positions of the end-effector and solve for the
effector pose, then calibrate using multiple estimations. Such
methods are all end-effector specific, while our method can
generalize to unseen end-effectors without training.

B. CAD Model-based Object Pose Estimation.

Early methods of object pose estimation [25], [26] esti-
mate the 6D pose of a known object. These methods are
instance-level [27], [28], meaning that the test object is seen
in training [29], [30], [31], and the method is unable to gener-
alize to unseen objects. To relax this constraint, recent efforts
aim to estimate the unseen object pose with the textured
CAD model known. [32] proposed the challenge of novel
object pose estimation, providing a method that established
correspondences between the object pointcloud and the scene
pointcloud. [33], [34], [35] follow this path, seeking to
directly extract object-agnostic features [36] from the CAD
model and match them with features of the scene to obtain
3D-3D matches. Other works [37], [18], [38] use a render-
and-compare approach, iteratively refining a coarse estimate
by rendering the object in different poses and comparing it
with the target image. Template-based methods [39], [40]
render templates [41], [42], and retrieve the nearest template

during test time [43], [44], and perform further refinement
or optimization. While progressing towards estimating the
unseen object pose, all current approaches struggle with
ambiguity caused by partial observations and symmetry. Our
approach enhances pose estimation by addressing symmetry
ambiguities and improving accuracy through the integration
of temporal information and robot priors.

III. METHOD

Problem Formulation. We assume the 3D model of end-
effector known and take a sequence of observations {Oi}ti=1,
where O = {Ic, Id, s}. Here, Ic represents the RGB image,
Id represents the depth image, and s represents the states of
the robotic arm. The goal is to predict the pose of the end-
effector at time t, denoted as pt ∈ SE(3).
Overview. Figure 2 illustrates our pipeline. With the 3D
model known, we first use rendered images as references
and employ foundation features to establish 2D-3D matches
between the reference and target images for pose estimation,
as detailed in Section III-A. Then, to address ambiguities
arising from partial observations and end-effector symmetry,
we incorporated a multi-historical key frame enhanced pose
optimization algorithm, as detailed in Section III-B.

A. Foundation Feature-Driven 2D-3D Matching

This section elaborates on the procedures for generat-
ing reference views, establishing 2D-3D correspondences,
and estimating initial pose candidates. We first render Kt

template images from the 3D model of the end-effector.
We then extract foundation features using Dinov2 [20] and
identify the top Kr reference views that exhibit the highest
similarity to the target image. Based on these features, we
establish 2D-3D matches to compute pose candidates with
the Perspective-n-Point (PnP) algorithm [21]. In this manner,
for every target image, we obtain S = {M̂i,pi}

Kr
i=1, where

M̂i represents the inlier 2D-3D matches and pi ∈ SE(3)
denotes the pose candidates. The index i ∈ {0, 1, ...,Kr}
represents each reference view. In the following, we will
delineate the specific details.

1) Templates generation and reference views selection:
We employ Fibonacci Sphere [45] to sample 80 positions
on a unit sphere. For each viewpoint, we uniformly sample
12 in-plane rotations, resulting in 960 sampled viewpoints.
Using Blender, we render the templates with ray tracing and
extract pixel-level visual features using Dinov2-ViTL [20],
denoted as Ψ. The visual features F for each template
image are computed as F = Ψ(Ic), where Ic represents
the RGB images. This process results in the template set
{Ic

i , I
d
i ,Fi}Kt

i=1, where Ic
i represents the RGB images, Id

i

represents the depth images, Fi represents the visual fea-
tures and Kt = 960. Further, we construct Bag-of-Words
descriptors (BoW) using the template features {Fi}Kt

i=1,
following [43]. Based on these descriptors, we select the
top Kr views that are most similar to the target image as
reference views. In this way, for each target image, we can
identify Kr reference images for subsequent calculations. In
this paper, we set the number of reference images Kr to 5.
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Fig. 2. Overview of FEEPE. Given the 3D model of the end-effector and a target image, we first render multi-view templates. Using foundation
features, we find the top Kr references most similar to the target image and compute 2D-3D matches and pose candidates (Section III-A). To address
ambiguities from partial observations, we introduce a global memory pool (Section III-B.1) that records keyframes and robot states for pose optimization
(Section III-B.3). To resolve ambiguities from symmetry, we propose a symmetry disambiguation module (Section III-B.2) to eliminate incorrect matches.

2) 2D-3D matching and pose candidate estimation:
Although we identified reference views from the templates
that closely match the target image using Bag-of-Words
descriptors, the discrete sampling within the templates still
results in significant pose errors between the reference views
and the target image. To address this issue, we utilize
foundation features to establish pixel-level correspondences
between the reference views and the target image. In this
way, for each reference view, we can further establish 2D-
3D matches between the target image and the 3D model,
denoted as M = {u ↔ X}, where u and X represent 2D
image points and 3D model points, respectively. Specifically,
we first compute 2D-2D matches by the cosine similarity
between Fref and Ftar, where Fref indicates the pixel-
level features of the reference views and Ftar indicates the
pixel-level features of the target image. By incorporating the
rendered depth maps, for each reference view, we convert
these 2D-2D matches into 2D-3D matches M and recover
the pose candidates p with PnP. To remove mismatches
in M, we eliminate outliers in the PnP solving process,
resulting in refined matches M̂. Through this way, for each
target frame, we obtain the results S = {M̂i,pi}

Kr
i=1.

B. Multi Historical Key Frame Enhanced Pose Optimization
In the preceding discussion, we established the formation

of 2D-3D matches and corresponding pose candidates S =

{Mi,pi}
Kr
i=1 between target frame and reference images.

However, estimating pose from a single frame introduces
ambiguities due to partial observations and symmetry. To
address these, this section introduces the temporal data
and robotic priors enhanced pose optimization. Specifically,
Section III-B.1 discuss the memory pool creation and key
frame selection, Section III-B.2 introduce the symmetry
disambiguation with temporal information and robotic priors,
and Section III-B.3 propose a key frame-enhanced joint pose
optimization approach for accurate pose estimation.

1) Memory Pool Creation and Key Frame Selection: To
enhance the accuracy and robustness of pose estimation,
we maintain a global memory pool {Si}, where S =
{M̂i,pi}

Kr
i=1 as described in Section III-A. The memory

pool is used to store historical data for subsequent opti-
mization (Section III-B.3). To ensure that only significantly
different poses are retained, we define a criterion based on
the angular distance. The angular distance function Ω is
defined as follows:

Ω(p1,p2) = arccos

(
tr(pT

1 p2)− 1

2

)
(1)

where p1,p2 ∈ SO(3). We implement the updating criterion
for the memory pool following [46]: a new frame Ot is added
only if the angular distance between the estimated pt and the



closest existing poses {p} in the memory pool satisfies:

min
pj∈{p}

Ω(pj ,pt) > θ (2)

where θ indicates a predefined threshold, which set to
10◦ in this paper. To balance computational efficiency and
estimation accuracy in pose estimation, we select key frames
from the memory pool for subsequent optimization. Initially,
we estimate the pose p̂t for the new frame Ot using the
end-effector pose pt−1 of Ot−1 and the transformation δp
derived from the forward kinematics of robot:

p̂t = pt−1 · δp (3)

We utilize the Farthest Point Sampling (FPS) [47] method
to select key frames from the memory pool, starting from
the estimated pose p̂t. This method aims to effectively cover
the pose space by maximizing the angular distances between
selected frames. The objective for selecting key frames is
succinctly formulated as:

P∗ = argmax
P⊂Pm,|P|=Kf

min
pi,pj∈P,i̸=j

Ω(pi,pj) (4)

where Pm is the set of poses corresponding to each frame
in the memory pool {S}, and P is the subset of chosen
from Pm, with Kf being the desired number of frames. This
ensures the diversity of selected frames, thereby enhancing
the robustness and efficiency of the pose estimation process.

2) Symmetry Disambiguation: While the memory pool
provides valuable historical data for pose estimation, the
presence of symmetric end-effectors poses significant chal-
lenges. Incorrect symmetric predictions can greatly affect op-
timization processes. To mitigate these issues, we introduce a
symmetry disambiguation module with temporal information
and robot priors. Specifically, we select a base frame Sb from
the memory pool, which exhibits a bimodal distribution due
to symmetry, as {p1

b ,p
2
b}. For the current frame St, denote

as {p1
t ,p

2
t}. The optimal pose combination follows:

p∗
b ,p

∗
t = argmin

pb∈{p1
b ,p

2
b},pt∈{p1

t ,p
2
t}
Ω(δp, δp′) (5)

where δp denotes the relative pose from forward kinematics,
and δp′ = pT

b ·pt denotes the relative pose from prediction.
3) Key Frame Enhanced Pose Optimization: Upon ob-

taining key frames, the relative pose between these frames
and the current frame is established with forward kinematics,
defined as {δpi}

Kf

i=1, for optimizing pt. As a result, we have
a set of observations, {Oi}

Kf

i=1, where O = {Ic, Id,M, δp},
where M = {u ↔ X}. For optimization, the data from all
reference views in each key frame with the correct symmetry
estimation are applied. The optimization objectives include
two main parts. First, we aim to minimize the 2D reprojection
error. The loss function is defined as:

L2D =

Kf∑
i=1

Kr∑
j=1

ρ
(
∥π(pt · δpij ·Xij)− uij∥2

)
(6)

where π(·) represents the projection function, and ρ(·) is
a robust cost function, Caushy loss, which mitigates the

influence of outliers. Second, we aim to minimize the 3D
distance error, and the loss function is defined as:

L3D =

Kf∑
i=1

Kr∑
j=1

ρ
(
∥π−1(uij)− pt · δpij ·Xij∥2

)
(7)

where π−1(·) serves as the back-projection function that
transforms 2D image coordinates u into 3D spatial coordi-
nates X with the depth known. Combining the two items,
the complete loss function is formulated as:

L = L2D + λL3D (8)

where λ is weighting factors, which is set to 1 in this paper.

IV. EXPERIMENTAL RESULTS

In this section, we compare our method with CAD model-
based object pose estimation methods and camera-to-robot
pose estimation methods. Additionally, we conducted a quan-
titative comparison with traditional Marker-based hand-eye
calibration, showcasing the high precision of our approach.

A. Experiment Setup

Dataset. We consider two datasets: RealSense-Franka [15]
and our synthetic dataset SynEEPose. RealSense-Franka in-
cludes 4 video sequences of a Franka Panda, from which
we extracted segments of 565, 500, 451, and 480 frames.
SynEEPose is a synthetic dataset generated with Blender
by ray-tracing [48]. We selected six commonly used end-
effectors and three robot arms, combining them to form var-
ious robot configurations. Each configuration was rendered
in 10 video segments, each containing 300 frames. In total,
SynEEPose comprises 180 video segments, amounting to
54,000 frames. The selected robot arms are Franka Panda,
UR10e, and UR5e, while the end-effectors include Franka
Panda, Robotiq-2F85, Robotiq-2F140, Kinova-3F, Robotiq-
3F, and Shadow Hand. These combinations cover a range of
features such as weak textures, symmetric designs, parallel
and three-finger grippers, and dexterous hands. During the
generation of SynEEPose, we applied domain randomization
to the background, ambient lighting, camera poses, and the
states of the robot arms. Please refer to our website for a
visualization of data samples.
Metric. We follow instance-level pose estimation, using the
Average Distance (ADD) and ADD-S [49] as metrics.

B. Comparison with CAD Model-based Pose Estimation

We compare our method with FounationPose [18], Mega-
Pose [37], and SAM-6D [34], the CAD model-based pose
estimation methods. To ensure a fair comparison, we provide
all methods with ground truth segmentation masks.
Accuracy analysis. As shown in Figure 3, our method con-
sistently outperforms others, especially in the low-distance
threshold region requiring high accuracy. This superior per-
formance is further validated by the quantitative results
in Table I, which reports the AUC values for ADD and
ADD-S metrics with a threshold of 1 cm. Notably, while
other methods have been trained on large 6D pose estimation
datasets, our method achieves superior performance without



TABLE I
QUANTITATIVE COMPARISON WITH MODEL-BASED OBJECT POSE ESTIMATION METHODS. VALUES REPRESENT THE AUC OF ADD AND ADD-S
METRICS WITH A THRESHOLD OF 1 CM, WHERE VALUES TO THE LEFT OF ‘/’ ARE ADD METRICS AND VALUES TO THE RIGHT ARE ADD-S METRICS.

MEGAPOSE CORRESPONDS TO MEGAPOSE-RGBD [37], AND MEGAPOSE† REPRESENTS MEGAPOSE-RGB [37] + MULTI-HYPOTHESIS + ICP.

Method Franka Panda Kinova-3F Shadow Hand Robotiq-3F Robotiq-2F85 Robotiq-2F140 RealSense-Feanka Average speed(ms)

MegaPose 59.21/68.10 20.02/26.85 2.89/9.29 29.66/37.98 22.79/51.80 22.12/52.29 0.19/1.03 22.41/35.33 1230
MegaPose† 65.09/70.63 46.29/50.58 45.01/46.03 63.62/66.88 23.42/56.63 42.85/64.05 13.88/38.11 42.88/56.13 2980

SAM6D 78.22/80.90 80.41/81.91 71.77/74.34 79.97/86.26 38.79/77.27 39.35/75.84 27.48/47.68 59.43/74.89 57
FoundationPose 81.48/83.79 87.13/87.69 59.51/65.99 82.83/87.85 41.12/79.41 35.96/69.54 19.94/47.17 58.28/74.49 1760
FEEPE(Ours) 85.24/86.29 85.24/86.36 84.53/85.23 88.73/91.67 84.33/86.11 84.87/86.15 29.27/48.71 77.46/81.50 67

Fig. 3. Averages accuracy curves of different methods. MegaPose† rep-
resents MegaPose-RGB [37] with multi-hypothesis and ICP, and MegaPose
corresponds to MegaPose-RGBD [37].

training on such datasets. The results highlight the robustness
and effectiveness of our approach, particularly in scenarios
involving symmetrical end-effectors. It should be clarified
that the performance difference between RealSense-Franka
and SynEEPose is due to RealSense-Franka being a manually
annotated dataset for robot pose estimation with errors in
end-effector pose annotations.
Run-time analysis. As shown in Table I, we report the
speeds of pose estimation for different algorithms. It is
important to note that these times do not include the seg-
mentation stage. Our method demonstrates the capability for
real-time online pose estimation of the end-effector.

C. Ablation Study

TABLE II
ABLATION STUDY OF

CRITICAL DESIGN CHOICES.

Method ADD ADD-S

A 7.50 19.49
B 54.28 70.67
C 74.40 79.04
D 77.46 81.50

Ablation study of critical de-
sign choices. We test four dif-
ferent setups of our method:
A: Only using Dinov2 2D-
3D matching and solving for
the end-effector pose through
PnP; B: Performing optimiza-
tion with only one frame
on top of A; C: Performing
temporal key frames-enhanced
pose optimization on top of A without symmetry discrimi-
nation; D: Our full method, adding symmetry discrimination
on top of C. Results are shown in Table II. Notably, method
B achieves comparable to SAM6D [34] and Foundation-
Pose [18] by only using single frame observations. Results
of methods C and D also show that multi-frame optimization
and symmetry discrimination both boost our performance
significantly, validating the effectiveness of these designs.

Test

Ref.

Layer 11 Layer 19 Layer 23RGB
Fig. 4. Features visualization from various Dinov2 layers.

TABLE III
EFFECTS OF DIFFERENT

DINOV2 LAYERS.

Layer ADD ADD-S

11 73.05 77.84
19 77.46 81.50
23 67.86 73.60

Effects of the Layers of Di-
nov2. We visualize the fea-
tures extracted at different lay-
ers of Dinov2 in Figure 4.
With deeper layers, semantic
features improve while posi-
tional features weaken [50], af-
fecting matching accuracy, es-
pecially for symmetric end-
effectors. Table III shows re-
sults using feature descriptors from different layers, which
offer an effective trade-off at intermediate layers.
Effects of Hyperparameters. We study how certain hy-
perparameters’ choices influence our method’s performance.
Key hyperparameters include: the number of rendered tem-
plates, the number of reference views selected for matching,
the number of key frames selected for multi-frame optimiza-
tion. Quantitative results are shown in Table IV. Increasing
templates, reference views, and keyframes improves perfor-
mance but slows inference, with diminishing returns at higher
values. As a balance between performance and inference
speed, we use 960 total templates, 5 reference views, and
8 keyframes for optimization as our final method setup.

D. Comparison with Robot Pose Estimation

Our end-effector pose estimation algorithm ultimately
serves as a robot self-calibration algorithm. Consequently,
we compare our approach with learning-based camera-to-
robot pose estimation algorithms, specifically RoboPose [13],
CTRNet [14], and RoboKeyGen [15]. Table V presents com-
parison results on the RealSense-Franka dataset. To obtain
the end-effector pose from camera-to-robot pose estimation
methods, we use the robot joint angles and forward kinemat-
ics to calculate the pose of the end effector in the robot space,



TABLE IV
EFFECTS OF HYPERPARAMETERS. BOLD NUMBERS INDICATE HYPERPARAMETERS SELECTED IN THE END.

Hyperparameters Templates Reference views Keyframes

240 480 960 1920 1 3 5 10 2 4 8 16

ADD 73.08 75.06 77.46 77.66 64.21 75.40 77.46 77.98 73.75 76.26 77.46 77.72
ADD-S 77.82 79.53 81.50 81.64 69.10 79.57 81.50 81.86 78.54 80.60 81.50 81.71

Speed(ms) 63 65 67 71 55 61 67 81 54 59 67 86

and then transfer it to the camera space using the predicted
camera-to-robot pose. The AUC threshold is raised to 2cm
because all robot pose estimation methods yield near-zero
results on the 1cm threshold. Despite extensive robot-specific
training, our method significantly outperforms all baselines.

E. Real-world high-precision targeting experiment

Following [51], we conduct a high-precision targeting ex-
periment to compare with marker-based hand-eye calibration
method [52]. Both our method and the marker-based method
use the images and the robot arm’s position to calculate
the transformation from the camera coordinate system to the
robot base coordinate system. We selected 20 positions for
calibration, covering as much of the workspace as possible.
For each specified number of views, we sample different
views from the 20 positions and experiment 3 times to reduce
variance. Additionally, the marker-based method requires a
marker board to be attached to the end-effector, and our
method uses Track-anything [53] for segmentation with a
manually specified prompt for the first frame.

TABLE V
COMPARISON WITH ROBOT POSE ESTIMATION METHODS ON

REALSENSE-FRANKA DATASET.

Method Training-free ADD@2cm ADD-S@2cm

RoboPose[13] ✗ 0.68 6.94
CTRNet[14] ✗ 5.46 22.57

RoboKeyGen[15] ✗ 9.35 29.99
FEEPE(Ours) ✓ 60.5 75.22

As shown in Figure 5, we detect the 5 different corners
of the marker board using OpenCV [54] and transform their
positions to the robot base coordinate system via the calibra-
tion results from the process mentioned above. Then we use
a pointer attached to the end-effector to tip these positions
and manually measure the targeting error. The results in Fig-
ure 5 demonstrate that our method consistently outperforms
traditional marker-based calibration across all numbers of
views. Moreover, our approach achieves an accuracy within
3mm using just three frames and reaches 1mm accuracy
with 15 frames. Overall, compared to conventional hand-eye
calibration methods, our method is not only marker-free and
online but also significantly more precise. Additionally, we
also conduct real-world grasping experiments. Please refer
to the supplementary materials for details.

F. Real-world online grasping experiment

We validate the effectiveness of our method on the down-
stream task of robotic grasping [55]. Following [22], we use

TABLE VI
RESULTS OF ONLINE GRASPING EXPERIMENTS.

#1 #2 #3 #4 #5 #6 Average

MegaPose 0.50 0.20 0.00 0.57 0.20 0.71 0.43
SAM6D 0.67 0.83 0.57 0.00 0.83 0.00 0.58

FoundationPose 0.57 0.83 0.71 1.00 0.50 1.00 0.75
FEEPE(Ours) 1.00 1.00 1.00 1.00 1.00 0.83 0.97
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Fig. 5. Results of high-precision targeting experiments.

estimated end-effector poses to conduct grasping experiments
without offline calibration. 30 different objects are catego-
rized into 6 groups. We perform grasping experiments using
GSNet [56] three times with different camera poses for each
group. Detailed object information and environment settings
can be found on our website. As shown in Table VI, our
method consistently outperforms others in online grasping
success rate, demonstrating high accuracy.

V. CONCLUSION

In conclusion, we introduced FEEPE, a foundation feature-
driven, online, training-free, and generalizable end-effector
pose estimation method. Extensive experiments demonstrate
that FEEPE outperforms learning-based and traditional meth-
ods, and provides superior flexibility and generalization,
enabling effective online robot self-calibration.
Limitations. Our approach relies on prior knowledge of
the end-effector’s CAD model and real-time state feedback,
limiting its flexible application across diverse scenarios.
Additionally, our method requires prior segmentation of the
end-effector, necessitating an extra segmentation module.
Future research could explore mask-free settings.
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